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S.K. Maiti*t, L.J. Gibson+ and M.F. Ashby*

*Cambridge University,
Engineering Department,
Trumpington Street,
Cambridge CB2 1PZ

England

+Dept. of Civil Engineering,
University of British Columbia,
, Vancouver B.C., Canada

+0On leave from
I1.1.T., Bombay, India.

ABSTRACT

N
~

.

plastic and brittle) have been measured as a function of deunsity. The
results are compared with models for the stiffness, strength and den-
sification; and constitutive laws are developed. Data and models for
each type of cellular solid are combined to develop mechanism-mode
maps which summariie the properties in a single diagram. Natural
cellular materials fit the same pattern; maps are presented, as an

example, for wood. The maps help in design and in the selection of

materials for load-bearing and energy-absorbing applications.

—The mechanical properties of 3 types of cellular solids (flexible,
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TABLE 1: SYMBOLS AND UNITS

Applied compressive stress

Nominal compressive strain

Initial density of cellular solid
Density after compressive strain €
Density of cell wall material
Relative density

Young's modulus of cellular solid

Young's modulus of cell-wall material

Elastic collapse or plateau stress of elastomeric

foam

Plastic collapse or plateau stress of plastic foam

Yield strength of cell-wall material
Crushing stress of brittle foam

Modulus of rupture of cell-wall material
Cell wall thickness

Cell size or cell wall length

Length of uncollapsed members at strain e

Initial length of an uncollapsed member

Second moment of area of cell wall or edge
Force acting on a cell wall

Euler buckling load for cell wall

Fully plastic moment of cell wall

Moment which will just fracture cell wall
Dimensionless constants

Initial height of sample

Height after strain €

Load

(N/m?)
-
(kg/m3)
(kg/m3)

(kg/m3)

(N/m2)
(N/m2)

(N/m?2)

(N/m?)
(N/m?)
(N/m?)
(N/m?)
(m)

(m)

(m)

(m)
(m*)
()
(N)
(Nm)
(Nm)
)
(m)
(m)
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1. INTRODUCTION

Polymeric foams have certain characteristic mechanical properties.

Elastomeric or flexible foams, in simple compression, are linear-elastic

to a strain of about 5 Z. Then the cell walls buckle and the foam col-

lapses at a nearly comstant stress (giving a non-linear elastic deforma-

[

tion) until the cell walls touch and the stress-strain curve rises steeply. .

Rigid polymers and metals, when foamed, have a similar stress-strain curve,

but for a different reason. Like flexible foams, they are linear-elastic
to a strain of roughly 5 Z. Then they suffer plastic collapse, compres-
sing plastically at a nearly constant stress until the cell walls touch,
and the stress-strain curve rises steeply. Brittle foams, too, show an
initial linear-elastic regime. But when the stress is reached at which
cell walls fracture, the stress-strain curve becomes irregular (though

- roughly horizountal) and the foam crushes at (roughly) counstant load.

Fig. 1 shows, schematically, the structure of cellular solids.
Some have open cells: the solid material is distributed as little
beams which form the cell edges. Others have closed cells: the solid
is distributed as little plates which form the cell faces. The mechan~

ical properties reflect, to some extent, this distribution. In practice,

;E most man-made foams (even those with closed cell faces) behave as if they
é? had open cells because surface tension draws much of the solid material

;; into the cell-edges during manufacture. For this reason, we discuss open-
;; cell foams in detail, but treat closed cell foams only in passing.

E; The mechanical properties of a cellular solid can be related to

;! the mechanics of bending, buckling, plastic collapse and brittle frac-

Eﬁ ture of its cell walls. Each part of the stress-strain curve can be

E§ quelled (1,2,3,4). The models give equations for Young's modulus E*,
[ ]
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A
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* ) *
the elastic buckling stress Oap the plastic collapse stress opl’ the
* . . o - .
crushing strength Tg» and terminal rise in strength, in terms of the

density and properties of the material of which the foam is made.

This paper seeks to test and extend these models, (checking them against

data from the literature and new data, described below), to derive constitutive

laws for design with cellular solids, and to develop diagrams which summarise

the overall mechanical response of each type. Symbols are defined in Table 1.

2. EXPERIMENTAL RESULTS

2.1 Foamed Plastics and Ceramics

We tested samples of commercial flexible foams (a polyethylene and a
polyurethane), samples of a commercial rigid foam (a polymethylacrylimid)
and an experimental batch of a brittle ceramic foam (mullite). The materials,
their origins and the properties of the cell walls are listed in Table 2.

Their structures are shown in Fig. 2.

Compression tests were carried out on blocks of foam of a convenient
size (the size depending on the stiffness), at a temperature of 18 oC and
a strain-rate of roughly 2 X 10”3/s. Results are shown in Figs. 3 to 6.
The axes are the nominal stress (the load P divided by the initial

section Ao):

o =2 (1)
(.
and the nominal compressive strain:
h° - h
€ = — (2)
o
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where h is the height of the sample after a strain €, and ho is

the original height. When foams are compressed beyond a strain of a

. e

few %, there is almost no lateral spreading, so the nominal and true ;i%
stresscs are, for all practical purposes, identical. The nominal ff%
compressive strain is, of course, limited to the range O to 1. ";-JJ
i

All the stress-strain curves show three regions: a linear elastic

L
o

S s
e
U

. 5

region; a long plateau where the stress is almost independent of strain;

x

and (for all but the brittle foams) a final region of densification in
vhich the §tress-strain curve rises steeply. Young's modulus E* of
the rigid foams was meaured by using clip gauges. The density p of

each foam was measured by conventional methods. Mean values of p, E*

and of the plateau stress o* are listed in Table 3.

2.2 ‘loods

We also tested a number of woods, chosen to give a range of

relative densities between 0.05 and 0.5. Samples of well-seasoned woods,

roughly 20 mm x 20 mm x 40 mm, were cut with the long direction parallel
:iﬁ to a radius of the trunk (Fig. 7) and parallel to the axis of the trunk
:3 (Fig. 8). The samples were stored for 10 days to reach an equilibrium

o moisture content (roughly 12 Z) and tested in compression at 18 °C and

e a strain rate close to 10~3/s.

i

e -

4:. 3. MODELS FOR THE MECHANICAL PROPERTIES

L] ‘ﬂ

jg When a cellular material is compressed, the cell walls deform. The

iii déformation modes (bending, buckling, plastic collapse and fracture) are

N

;j. known from studies of model cells (2). Two-dimensional models (shown in ;
L" -.' -{.
e insets of subsequent figures) can be analysed accurately (2). With this O
U .“':'J'
i knowledge, a kind of dimensional analysis of 3-dimensional cellular g
o g
;5: solids (1, 3, 4) becomes possible. This analysis, ?
"J';: 1
s cod




summarised briefly below, involves, in each case, a single geometric
constant which must be determined by experiment. The data are

analysed to give this constant.

3.1 Stiffness

as shown in the inset of Fig. 9. A force F, applied as shown,
causes the non-vertical beams to deflect by an amount, 4§, which
can be calculated from elastic beam theory:

C, F 23

8 = v 3)

~Es I

Here C; 1is a factor which depends on cell-wall geometry.

A similar deflection occurs in a 3-dimensional cellular solid,
like those shown in Fig. 1. Considering the open-cell foam, <the
.force F 1is proportional to 432 where o 1is the remote stress;
and the strain ¢ is proportional to g/p;. The second moment

of area, I, of a cell edge with section t2 is 412 so that

the modulus E* of the foam is:

oS reE &
o E* = E oW (4)
1N
?H} ' .
(o The dimensions of the open cells are related to the relative
,"i it .
A
:ﬁi- density of the foam p/p_, by:
AR s
e
R
w
O P /Ds « t2/ g2 (5)
s
rLoe, .
% giving: E* p 2 :
) g% G (6)
T 5 8

E
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When a foam is loaded, the cell walls at first bend (1,2,5,6,7)
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where C, is a constant. The shear modulus scales in a similar
way, because shear deformation in a foam also causes simple bend-
ing of the cell walls. (For closed cells, I« 2e3  and p/ps « t/e

giving instead E*/ES = (p/ng)?).

Data are compared with eqn. (6) in Fig. 9. The full line is
a plot of eqn. (6) with C, = 1. It gives a good description of
a wide range of materials and densities. (We find that plastic
foams deviate systematically towards the line E*/Es = (p/ps)3/2,
because, we believe, some limited plasticity occurs even under

small loads. Section 2.3, below, explains the power of 3/2-)

Poissons ratios Vv have been mezsured for cellular solids (1,3). In the

linear-elastic regime, v % 4, although in the plateau regime it is almost zero.

3.2 Elastic Buckling

Flexibie foams show extensive non-linear elasticity. Iz is
caused by the elastic buckling of the cell walls (8 ,18), as
shown in the inset of Fig. 10, and it is this that gives the plateau

of the stress-strain curve for elastomeric foams.

The critical load at which a column of length £, Young's
modulus Es and second moment of area I buckles, is given

by Euler's formula:
cr 22

1f this load is reached for a layer of cells spanning the section,
they buckle, initiating the elastic collapse of the foam. For the

*
3-dimensional open-cell foam of Fig. 1 the stress g, 2t which




Y WA e T IV e Ned™

LEASLg

SR T T RL T T T e e

N S .7 T 7 T W T e Ty

this occurs is proportional to Fcr/lz. Using the facts that

I « tb and p/p_ = (t/2)? we obtain the elastic collapse, or
plateauy,stress:

*
4]

el _ p (2 .
<+ - C3 (-p—) 4 (8)
s S

It is valid for relative densities below 0.3 . At higher densities, the

cell walls are too short and stocky to buckle; instead theyyield or crush.

*
Data for Oe1 for elastomeric foams are compared with

eqn. (8) in Fig. 10. They are well fitted by the equation with

C3 = 0.05.

3.3 Plastic Collapse

If the cell-wall material yields plastically, as do metals and

.many polymers, then the foam as a whole shows a plateau caused

by plastic collapse. It occurs when the moment on the inclined
cell walls exceeds the fully plastic moment, creating plastic
hinges (2,3,19,20) as shown in the inset of Fig. 11. For a

beam of square section of side t, the fully plastic moment is:

= 3
My %-cy t 9)

The moment is proportional to F&, and (as before) the force F

is proportional to o%?, Combining these results with eqn. (5)

*

we find the plastic collapse, or plateau stress op1 to be:
*
o, 5 3
B2 = ¢, &) (10)
a p
y S

&
-
' ~d
L
.l
cad

1




Data for the plateau~-stress of plastic foams are plotted in
Fig. 11. They are well fitted by eqn. (10) with C4 = 0.3 for rela-
tive densities less than 0.6 (1); at higher densities the cell edges

are too short and stocky to bend plastically ; instead, they shear.

3.4 Brittle Crushing

Brittle foams (ceramics, and certain rigid polymers) collapse
by yet other mechanisms: brittle crushing in compression (23),
brittle fracture in tension (24,25). Let the modulus of rupture
(the maximum surface stress at the instant of fracture) for the

cell-wall material be Then a cell wall will fail as shown

O'f'

in the inset to Fig. 12 when the moment acting on it exceeds:

'The moment due to F is proportional to Ff&, and the stress to

F/%2. Combining these with eqn. (5) gives .the crushing

*

strength Op of the foam:

o 1
£ _ o_
5t Cy (.ps) (11)

The limited experimental data, shown in Fig. 12, are consistent with
G = 0.65 but are insufficient to give much confidence in eqn. (11). But
observations, reviewed elsewhere (4), suggest that the model has the

correct physical basis, and we shall employ it in subsequent sections.
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3.5 Densification and the Shape of the Stress—=Strain Curve

The plateau ends when the folding cell walls begin to touch. During
elastic buckling or plastic collapse, the foam compresses axially with
almost no lateral spreading (v 4 O0). Then simple geometry gives the

relative density p (e)/pg after 2 nominal compressive strain ¢ as:

e (e _o 1 .
Py Ps (1 - e) (12)

where p/ps is the initial relative density, Densification is complete,
and the stress-strain curve becomes almost vertical, when p (E)/DS‘= 1,

when the strain is:

€ = 1- p/ps (13)

We find experimentally that the end of the plateau corresponds to ..

p (e)/pS % 0.33 (the solid occupies % of the total volume)when the

strain is:

P

b
.. roe e
. . v
W Sl
= B e
. t \ .

h et e

‘.
v

[V

[

T

eg =1 -3 (/o)) (14)

Consider now the shape of the stress-strain curve for flexible
foams. In any sample of the foam, there is a distribution of cell
edge-lengths and angles. The plateau starts when a layer of cells
(those with longest, or most favourably ériented edges) buckle (eqn. 7).

A small increase in stress is needed to cause more cell edges (those which

are slightly shorter) to buckle. We postulate that the length of

the edges which are about to buckle after a strain ¢, & (e), is given by:




ie Suapnn b L0e A0 A A B AR i i R A N . A A R

..............

L (e) =2 (15)

1 - (/o )7

(The value & (e) ranges from zo at the start of deformation

to zero when full density is reached.) Using eqn. (12) we obtain:

P 1 3
(1'(2(1_53))

£ (g) = Lo (16)

1- (/)T

The argument of Section 3.2 can now be repeated. The force F
on the cell wall is related to 20 throughout the test by
F=g¢ 2%. Collapse of cells with edge ‘length ¢ (given by
eqn. (16)) occurs when this force exceeds the buckling load

given by eqn. (7). Combining these equations gives:

o 0.05 ¢ 2 1- (D/Os)§
ES . ps 1 - (p/ps TT_%_quﬁ' (17)

which reduces to our original eqn. (8) at small strains, but becomes

infinite (approximating Es) at the strain given by eqn. (13).

A similar analysis can be made for plastic foams, We postulate that

the length of the beams which are about to bend plastically decreases as

strain proceeds (because the long ones bend first). If the length at o
a strain € is given (as before) by eqn. (16), then by the argument s

RS
of Section 3,3, the strength of a plastic foam follows: X %




et

o 3+ 1 - (po/p )%
‘—é—- = 0.3 EZ ) — (18)
s s Ps ll - (plog ——20°

This reduces to eqn. (10) at small strains, but becomes infinite
(approximating Es) as the foam is compressed to the solid

density (eqn. 13).

These two results give an approximate description of the
stress-strain curves for flexible and for rigid-plastic
foams, in the fields of plastic collapse and densification.
They are combined with the equations for linear-elasticity,

in the next section, to construct deformation-mode maps anol

enerqy - a.\;sor}tﬁov\ ouagrams .,

4, CONSTRUCTIONYOF DEFORMATION-MODE MAPS
We have seen that when an elastomeric foam is compressed, it first

deforms in a linear-elastic way; then its cells buckle to give non-
linear elasticity; and, finall§ the cells collapse completely and the
stress rises rapidly as their faces and edges are forced together. A
plastic foam behaves in a somewhat similar way, except that linear
elasticity is now followed by plastic collapse, and the ultimate
forcing together of the cell walls., With brittle foams, progressive
crushing can again lead to a plateau which ends when the material is
completely crushed. We have seen, too, that each of these processes
can be modelled adequately by using classical beam theory to analyse

the deformation of cell walls. The analysis relates foam properties
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to the relative density (p/ps) and to the properties of the material
of which the foam is made. The relations, summarised in Table 4,

suggest a normalisation which brings the properties of foams with

TN e s e NI S 4!

the same relative densities into coincidence. Then the properties
of an entire family of foams can be shown as a deformation mode map
(4), of which Figs. 13 to 16 are examples. The map has axes of

normalised compressive stress o/Es, and the compressive strain

e. It shows the fields in which each mode of deformation (linear
elasticity, non-linear elasticity, plastic collapse and so forth)
is dominant., Superimposed on the fields are stress-strain con-

tours for constant (initial) relative density.

o—— o s . spe ket
N A . Ve
.. - e
AR P
' . Y

4.1 Elastomeric Foams

‘W‘. L’-:"‘-"

Figs. 13 and 14 show mechanism-mode maps for elastomeric foams,

Fig. 13 shows the experimental stress-strain curves for polymeric

(s
b

foams; Fig. 14 is based on the theory alone. Mechanism field boun-

daries (heavy lines) are shown on both figures. They were constructed

as follows.

The linear-elastic regime ends when elastic buckling begins.
Using eqns. (6) and (8), and the fact that o = Ee¢ in the linear-
elastic region, we obtain the strain corresponding to the boundary of

the linear-elastic field:

€ = C3 = 0,05

At relative densities above about 0,3 the cell walls become so stocky that
they can no longer buckle elastically, The field boundary thus bends until

it is tangent to the linear-elastic loading line for p/pS = 0.3,

Once elastic buckling starts, the stress is related to the strain

by eqn. (17). We define the transition from buckling to densification
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as the line at which the relative density has reached <. Then, from

eqn. (14) and (17) the equation of the transition is:

¥ .
59 (19)

Eﬂ = 5.9 x 1072 (1 - €)2 {1 - (
S

It is plotted as a heavy line, sloping down from left to right on the figures.

Fig. 14 shows a theoretical map. The contours are stress-strain curves
for foams of relative density between 0.01 and 0.4. They show a linear
elastic regime (eqn. 6) and a plateau corresponding to elastic buckling;
they start to bend upwards when densification starts (eqn. 17); and they
approach a limiting slope of Es when densification is complete (eqn. 13).
Within the field of elastic buckling the material exists in two states at
almost the same stress (the linear-elastic state and the densified state);
it is like the p-V response of an ideal gas (or the temperature-entropy
diagram for steam) in which gas and liquid states can co-exist. The
material deforms by the formation of densified bands which thicken, at
constant stress, as the strain is increased, until the entire material

has reached the dense state.

The figure describes the overall response of all isotropic, flexible

T NS
v e Y r TN

(s foams in compression. In tension, flexible foams are roughly linear-
o2

S elastic to rupture.

G

'.-::*.',

e 4.2 Rigid Plastic Foams

\,_‘.-

n-

}L}f Plastic foams, like the elastic ones, show three regions: linear
et T .

g!ﬁ elasticity, plastic collapse and densificaticn - though now the strain
bixl beyond the linear-elastic regime is not recoverable. Figs. 15 and 16
?%ﬁ: are a pair of maps, one showing our experimental stress-strain curves for
>

plastic foams, the other, based on the theory alone. Mechanism field-
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boundaries are superimposed on the stress-strain curves.

The boundary of the linear-elastic field (heavy line) is obtained
from the equation for linear elasticity (eqn. 6) and that for plastic

collapse (eqn. 10); its equation is:

g 4
1
E‘l= 0.3 £ =5 o (20)
S S

In constructing the map we have taken cy/ES to be 0.10 (a fairly typical
value). Next to the linear-elastic field is the field of plastic collapse.
As before, two states of strain co-exist at almost the same stress, so that
complete collapse of part of the structure can occur while the rest is still
elastic; the bands of dense material broaden with increasing strain. We de-
fine the transition from collapse to densification as the line at which the
relative density has reached 4. Then, from eqn. (14) and eqn, (18), the

equation of the traansition line is;

o 3 ¥
L=2019X (-6 (1-E9) (21)
E E 3
s s
It is plotted as a heavy line sloping down from left to right on Figs. 15

and 16,

Fig. 16 shows a theoretical map for plastic foams with ay/Es = 0.10.
It shows fields of elastic deformation, plastic collapse and densification.
Superimposed on the fields are stress-strain curves for foams with densities

from 0.01 to 0.4.

The figure shows the overall response of isotropic, plastic foams in
compression. It is less general than the map for elastomeric foams because it
must be constructed for a particular value of cy/Es‘ But the equations show
that the boundaries are not very sensitive to its value, and, for a given

material, thc diagram shows the behaviour for all densities.

Lot aNL A S L ANMACEL LSRN B S e I L L R R e S

R
DO .




VN0
NI
NN

1s

The behaviour of plastic foams in tension resembles that in com-

pression, truncated by fracture,

4.3 Brittle Foams

Rigid foams show linear-elastic behaviour to fracture. In compres-
sion, the foam crushes at constant stress (eqn. 11), and since the crush-
ing equation has the same form as that for pléstic collapse, the behaviour
will resemble that of Figs. 15 and 16, If the foam is contained, it will
densify at the strain given approximately by eqn. (18), with oy/Es Te-

placed by cf/Es.

In tension, linear elastic behaviour is truncated by fast, brittle fracture.

The fracture mechanics of foams (28) need not concern us here.

4.4 Woods

These ideas can be applied, in an approximate way, to the compressive
deformation of wood. Woods are cellular solids, composed of mixed polymers
(cellulose, lignin, hemicellulose), and with a relative density ranging from
less than 0.05 (balsas) to almost 1 (lignum vitae). Compressed across the
grain, wood behaves like a rigid-plastic foam, Stress-strain curves for
the woods we tested are shown in Fig. 17, plotted on axes of c/Es and

e (data in Tables 2 and 3).

The field boundaries of Fig. 17 were constructed as follows. In

radial compression, Young's modulus for woods is found to follow the same

law as elastic foams (29):

o 2
E* = 10 (p—-) GN/m? : (22)
S

Compressive collapse in the radial direction eqn. (29) starts at the stress:

0 2
o* = 135 (‘;‘) MN/m 2 (23)
S
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When woods are compressed axially, they collapse by a process which
involves the kinking (30) or fracture (29,30) of the cell walls,
This occurs at essentially constant stress until a critical state
is reached, when the stress-strain curve bends sharply upwards.
Experimentally, we find that the bend upwards occurs at a sfrain £

c
corresponding to a density of roughly 0.5:

= 2.
=1-2 (ps)

€
Cc

Combining this with eqn. (27) gives the field boundary:
*
Z-=22x10%3(1 - ¢
Es

It is plotted as a hedvy line on Fig. 18. The figure summarises
the compressive behaviour of woods in the axial direction. Both dia-
grams allow, by interpolation, or the use of the equations, the approxi-

mate prediction of the stress-strain curve for woods of other densities.

5. CONSTRUCTION OF ENERGY-ABSORPTION DIAGRAMS

The commonest use of foams is in packaging. The aim is to absorb
energy (usually the kinetic energy) of the packaged object when it is
dropped, or is accelerated or decelerated in some other way, while at
the same time keeping the force on the object below the limit which
will cause damage. In selecting a material for the package, we need
to‘know the energy that can be absorhed without the stress exceeding
a critical value. We show below that there is an optimum foam density
for a given package. If the density is too low, the foam 'bottoms out'

(with a sharp increase in stress) before enough energy has been absorbed. If
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it is too dense, the stress exceeds the critical value before enough

energy has been absorbed.

Figure 19 shows, inset, part of a stress-strain curve for a foam.
It is linear-elastic to €4y and thercafter follows the stress-strain
o (e¢) curve described approximately by eqn. (17) or (18). The area, up

to the strain €*, where the stress is o, (shaded on Fig; 19) is:

€o c*
W= J ¢ de + J og(e) de
[o] €o
E*
. W 1 E » o(¢c)
—_— = e — + —_—
or e 2 Eg €5 J Eq de
€o

This equation was integrated numerically, using eqn. (17) for o(e) for
elastic foams and eqn. (18) for plastic foams,to give Figs. 19 and 21.
Similar diagrams can, of course, be constructed directly from its experi-
mental stress-strain curves (such as those shown in Figs. 3 to 6) by
measuring the area W/Es up to the strain e* corresponding to the

stress o/Es. Such diagrams are shown, for comparison, in Figs. 20 and 22.

The energy diagram, calculated for elastic foams (Fig. 19) shows the
normalised energy absorbed perlunit volume of foam, W/Es, plotted against
the peak stress c/Es, for a range of densities p/pg. Normalised in this
way, the diagram describes all elastic foams. If the critical damage
stress is selected, then the diagram gives the foam density which will absorb
the greatest amount of energy without this stress being exceeded. The lower
th; peak stress, the lower is the optimum foam density. As an example, using
Fig. 19 or 20, the optimum foam density for a critical damage stress o/Eg = 10-3
is p/ps = 0.1.. Chossing the right density is important: it can easily give

a factor of 10 greater absorption of encrgy than a wrongly-chosen foam.
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Figures 21 and 22 show energy diagrams for a plastic foam with
°y/Es = 0.1. Such diagrams are less general than those for elastic
foams, because oy/ES must be specified; but a single diagram still
describes all foams made of a given material (polystyrene, for
example). Here, too, there is an optimum foam density for a given
encrgy absorption and peak stress., The diagram allows it to be

chosen.‘

The figures show that, for a given material (and thus Es), there is
a maximum energy which can be absorbed for a given peak stress. The
envelope shown as a broken line on Figs. 19 and 21 divides the diagram
into an accessible region (below the line) and an inaccessible one (above).
For elastomeric foams, the equation of the line is approximately:

7/8
o .
W/E, = 0.11 (—,Z)

It applies to all elastic foams. For the plastic foam with cy/Es =0.1,

the equation of the line is approximately:
2/3

g
W/E = 0.05 (-E—s)

The equations from p/p, = 0.01 to p/og = 0.3.

6.  CONCLUSIONS AND APPLICATIONS

6.1 Conclusions

When a cellular solid with a relative density below 0.30 is compressed,
it shows a stress-strain curve with three parts: a linear-elastic part,
a long plateau, and a regime of final densification. The properties of
an entire class of such solids can be summarised as a deformation-mode

map, which shows how each of the three parts changes as the reclative

o ————
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density changes. The method can be applied to man-made foams (Figs. 13 to

H

a’a

16) and to natural materials, such as woods (Figs. 17 and 18), to give

0

S5 R0

diagrams which summarise the stress-strain response of each class of

material.

The mechanical properties of cellular solids can be modelled with
prevision. The models lead to constitutive laws (stress-strain relations)

which have been thoroughly tested in simple compression. They are summa-

::a

rised in Table 4. The constitutive laws can be used to construct deforma-
tion-ﬁode maps, and can be integrated to construct energy-absorption dia-
grams. These diagrams (Figs. 19 to 22) show how the energy absorbed,

per unt volume of foam, depends on the density of the foam and on the
stress. The diagrams sﬁow that there is an optimum foam density for a

given packaging or energy-absorbing application.

6.2 Design with Celiular Solids

The equations derived in the tekt, and summarised in Table 4, pro-
vide the basic information for design with foams in load-bearing applica-
tions. The tests described above all involved simple compression.

Under multiaxial loads, the behaviour is more complicated. At small

strains (e < 5 %), while the material is linear-elastic, it behaves

like any other elastic solid (1,3) with Young's modulus E* given by

R ]
e

eqn. (6) and Poisson's ratio v = §. But once the plateau-stress has

e e e
B etonaibatioadh

e

been reached, the behaviour changes: the extensive deformation at nearly -
constant stress involves a large volume change, but almost no lateral o
strain (1,3,26,27) so that v % 0. Then the material deforms under a )

RN
s

multiaxial state of stress when the maximum principal stress (not the
octahedral shear stress) reaches the critical value ¢* (eqn. 8 for flex-

ible foams, eqn. 10 for plastic foams). Because of this, the indentation




hardness of plastic foams is equal to o* (not 3c*, as in dense

pl pl
solids) and the force needed to comprcss a foam is the same whether
it is frce at its cdges or constrained there (15). Once densification

" starts, of course, the properties revert towards those of conventional

solids.

The deformation mode map for a class of foams provides a compact
summary of the mechanical response of the class. in particular, the
maps give a rational way of selecting the material and density which
will give a desired stress-strain response. Similarly, the energy-
absorption diagram for a class of foam summarises the energy absorbing
capacity of all members of the class. The diagrams identify the optimum
foam material and density for a given packaging, padding or cushioning

application.
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TABLE 3: . EXPERIMENTAL MEASUREMENTS
. SAMPLE I p (ke/m?) £x (MPa) s (tPa)
ETASTOMERIC FOAMS
o Dunlop 01 14.4 0.054 0.002
. D14 32.4 0.062 0.0025
o D17 51.7 0.057 0.005
- Frelen F30 29.4 0.275 0.04
F70 69.2 1.10 0.1
F120 120.0 3.82 0.24
F175 138 4.58 0.3
F250 360 23.45 2.56
PLASTIC FOAMS Tension | Compr.
Rohscell 3} 34 43 20.8 0.4
A 51.6 73.4 28.1 0.8
N 70.4 95.2 56.9 1.6
10 124 194 129.7 3.0
170 160 280 198.7 5.2
190 185.7 432 | 258.9 6.0
BRITTLE FOAMS
2 51 100 8-50 .02 -0.18
T s2 200 6-22 0.035-0.16
S3 280 2-8 0.072-0.2)
2 54 320 25-44 0.093-0.16
3 ’ 3.
- HO0DS " Radial | Axial | Radial] Axial |Radial | Axial
Balsa 103 103 31 a2n | 0.80 | 8.0
Balsa 124 124 79 258 1.20 7.0
= Willow 403 355 198 1270 3.70 | 22.0
.- Pine 4453 - 647 - 6.50 -
3 Willow 520 385 321 2203 8.25 | 22.5
Mahagany 615 - 610 - -
~ Beech 711 735 1160 7393 50.0
Beech 737 764 1569 7500 $0.0
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TABLE 4: EQUATION FOR STIFFNESS AND STRENGTH OF CELLULAR SOLIDS

Property Equation ig"' N

Young's modulus

mlm
*»
"
~
Uy

s . (6)

Q
o * 0

poiy

Plateau stress,

2 .
= (. .
flexiblc foams 0.05 (p ) ()

[22]
]
(7
i
La

I

* . =

Plateau stress, ‘ 1_ 0.3 (Q—Ja. (10) igj
plastic foams ) " %p '

-
(]

Approximate plateau
stress, brittle foams

- (11)

QIQ
 Irh »
1]

(o]
2
~
LD

Stress-strain response, | ¢ _ P Ps : Ju
flexible foam g = 0.05 () o T |7
s s |1 - (‘-;— 1—_-—8-)) S
S 2;};
oy 3
Stress-strain response,’| 4 1- (ps ﬁggﬁ
plastic foam == 0.3 (-p—) . T -—;_ (18) NS
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= FIGURE CAPTIONS
1:._ . L.
Ii Fig. 1. Schematic of cellular material, showing dimensions.
;f "Fig. 2. Microstructures of the four types of foam:
o (a) polyethylene p/pS =0.115; (b) polyurethane o/o = 0.029;
A (c) polymethylacrylimide p/pg =0.105; (d) mullite p/ps = 0.002.
B rig. 3. Compressive stress-strain curves for flexible polyethylene foams.
w
- Fig. 4. Compressive stress-strain curves for flexible polyurethane foams.
Fig. 5. Compressive stress-strain curves for rigid (plastic) polymethyl-
acrylimid foams.
Fig. 6. Compressive stress-strain curve for a brittle mullite foam.
Fig. 7. Compressive stress-strain curves for woods, in the radial
direction (perpendicular to the grain).
Fig. 8. Compressive stress-strain curves for woods in the axial
direction (parallel to the grain).
Fig. 9. The relative Young's modulus, E*Eg, plotted against relative .
densitv. op/pg. . T
Fig. 10. The relative elastic collapse stress, o¢&1/Es, plotted oy
against relative density, p/ps. ' e
Fig. 11. The relative plastic collapse stress, 051/0 , Dlotted jiﬁ
against relative density p/ps. "
: 2
Fig. 12. The relative crushing strength, a%/af, plotted against ?%
relative density p/pg, for brittle foams. -
Fig. 13. A deformation mode map for flexible foams. It shows the kf
data of Figs. 4 and 5, normalised. The construction of :
the field boundaries is described in the text. o
|
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Fig. 14. A dcformation-mode map for flexible foams, constructed
entirely from the equations developed in the text.

Fig. 15. A deformation-mode map for plastic foams. It shows
the data of Fig. 6, normalised. Thc construction of the
field boundaries is described in the text.

Fig. 16. A deformation-mode map for plastic foams, constructed
entirely from the equations developed in the text.

Fig. 17. A deformation-mode map for woods, tested in the radial
direction (across the grain).

Fig. 18. A deformation-mode map for woods tested in the axial
direction (along the grain).

Fig. 19. An energy-absorption diagram for elastomeric foams,
constructed from the equations given in the text.
The broken line divides the diagram into an
accessible and an inaccessible region.

Fig. 20. An energy-absorption diagram for elastomeric foams,
constructed by measuring the areas under the stress-
strain curves of Figs. 3 and 4. It is directly com-
parable with Fig. 19.

Fig. 21. An energy-absorption diagram for plastic foams, const-
ructed from the equations given in the text, with
oy/Eg = 0.1. The broken line divides the diagram
into an accessible and an inaccessible region.

Fig. 22. An energy-absorption diagram for polymethacrylimid
foams, constructed by measuring the areas under the
stress-strain curves of Fig. 5. It is directly com-
parable with Fig. 21.
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Fig. 2. Microstructures of the four types of foam:
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Fig. 3. Compressive stress-strain curves for flexible polyethylene foams.
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Fig. 4. Compressive stress-strain curves for flexible polyurcthane foams.
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DEFORMATION MAPS FOR AMORPHOUS POLYMERS

D.G. Gilbert, M.F. Ashby and P.W.R. Beaumont

Cambridge University, Engineering Dept.,

Trumpington Street, Cambridge CB2 1PZ, U.K.

ABSTRACT

This paper explores the possibility of constructing

deformaticn-mechanism maps for amorphous polymers. Five regimes are
identified: the glassy regime, the visco-elastic regime, the rubbery regime

fﬁ and the regime of viscous flow (melting), truncated by decomposition.

Constitutive ecquations for eacn regime are assemoled and aéapted o give a good
description of a large body of experimental data for amorphous
polymethylmethacrylate and polystyrene. The adjusted laws are <hen used to
construct diagrams which relate the time-and temperature-depencdent modulus,

£ (£,T), to the temperature and the loading time (or frequency'. The

diagrams are divided into fields corresponding to the five regimes.

A diagram summarises the small-strain mechanical behaviour cf the polymer

over a wide range of conditions.
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GABa, Disc 8

TABLE 1: SYMBOLS, DEFINITIONS AND UNITS

Temperature (X)

Q

Tensile or compressive stress (MPa)

m

Tensile or compressive strain
-l

)

Tensile or compressive strain rate (s

Time (s)

< o M.

Frequency (s™)

Time and temperature dependent Young's modulus (MPa)
Modulus at O K (MPa)

Temperature coefficient of modulus

)

(O]

Glass temperature (K)
Depolymerisation temperature
, M, ¥ Molecular weights (kg/mol)

s
Mean activation energy (kJ/mol) -

€ O x 83 O
i

Fractional standard deviation of activation energy

a2 I T D L

m o3
NN
nm o

Fractional modulus drop at a transition

a, Shift factor for time-~temperature-equivalence

n Viscosity (Ns/m)

n Pre-exponential for viscosity (Ns/m’)

a , e Bulk thermal expansion coefficient belcw and above Tg D!
W.L.F. constants (see eqn. 15)

0 Density (kg/m’)

f Fractional free volume

v Internal energy per unit volume (J/m’)

R Gas constant (8.314 J/mol K)

E Energy of formation of vacancies in a crystal (J/mol)

E Energy of motion of vacancies in a crystal (J/mol)

v A pre-exponential frequency factor (s-x)
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K 1.  INTRODUCTION GAB1, Disc 8 .
:
*;;ﬁ When a polymer is loaded, it suffers deformation which, in general, i;;
2$% increases with time of loading. For uniaxial loading, the resistance to ifﬁ
’ small-strain deformation is conventionally measured by the time-and
‘étk temperature-dependent modulus, E (t,T) (from now on simply called E). T;i
'*:j If, for instance, a constant stress o is applied to a sample of the . ;1;
.;:j polymer, giving a strain ¢ (t,T) after a time ¢t at temperafure T, iﬂ
" then: o
,3523 .
R Se e W
- Linear amorphous polymers like polymethylmethacrylate (PMMA) or
§ polystyrene (PS) show five distinct regimes of deformation, in each of which
{f{ the modulus has certain characteristics, illustrated in Fig. 1.
__ fa) The glassy regime, with a modulus of between 1 and 10 GPa, associated
% with stretching and bending of intermolecular bonds, and showing
only a slight time dependence assoccia%ted with a number of
}i secondary relaxations.
‘33: (b) The glass-transition regime, in which the modulus drops steeply from
;Ei around 1 GPa to near 1 MPa with increasing temperature or time of
b loading.
J

' (c) The rubbery regime, with a modulus of between 1 and 10 MPa, associated
with the rubber-like sliding of the long-chain network of molecules,

constrained by entanglements which behave (physically) like P

e cross-links. ﬁﬂf
! ) -.'
X AR

(d) The viscous regime, at temperatures well above the glass transition

A temperature, in which the polymer can be thought of as a viscous N

o liquid; its molecules move relative to each in a snake-like manner

Q;' (reptation) which, when biased by stress, leads to viscous flow.

w;; fe) A regime of decomposition in which chemical breakdown begins. «,i
R .'__..
S A
*uq cach regime is associated with a cervtain range of mocdulus. Zach has D
\:‘: - . : . : s : N . ) .*
s been studied and mocdelled in nore or less 3de=ail, and ccnstituvive laws A
S B
S for each have been formulated - they are reviewed below. 3Ixperiment-l .
4

- . . L
data for E, in each, are available for PMMA and PS. OQur aim T

N

.

.




and %thus the Van der Waals bonds, again, which limit its
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here is to fit the constitutive laws to the data (requiring some 2oy
modification to the models) and to examine how the laws can be combined to lj§$
give a self-consistent description of small-strain deformation from 0 °X to 524§

e

above the melting temperature, and for all practical locading times. The

rasults are assembled into diagrams which summarize the small-strain
deformation behaviour of each polymer as a function of temperature, time and

frequency.
We now examine the five regimes in more detail, reviewing, and
selecting, among the constitutive laws for each. Symbols and their

definitions are listed Table 1.

2. DEFORMATION MECHANISMS

The Glassy Regime and the 8, y and 4§ Relaxations

Well below the glass temperature, Tg, linear amorphous polymers have
Young's moduli of, very roughly, 3 GPa. This is a direct reflection of the

low=gtiffness Van der Waals bonds which bind one chain to another as shown

as dotted lines in Fig. 2: when the polymer is deformed, it is these bonds
which stretch and bend. The covalent C-C bonds which form the chain

backbone (full lines) are about 100 times stiffer than the Van der Waals
bonds, and their stretching and bending contributes nothing significant to
the elastic deformation. Rotation about a C-C bond is another matter: the -

single C-C bond rotates so easily that it is problems of steric hindrance,
extent (Bowden, 1968; Yannas, 1974; Yannas and Luise, 1982).

If the internal energy of the polymer, per unit volume, is V (g),
then the glassy modulus at O K is calculated (in principle) by forming the
second derivative of V (e) with respect to «¢:

@ v (¢) . ‘
- T adl (2)

The difficulty is %hat of modelling V (e} with enough precision to give
more than an order-of-magnitude estimate of the modulus. To do so requires
a potential function describing the Van der Waals bonds. Part of the
elastic strain comes from bond stretcnhning; then, ccmmonly, a Lennard-Jones

potential is summed over all molecules zo give V (e¢). Strain can also




result from rotation of segments of a single molecule about a C-C bond

such a way that the molecule changes shape, (Bowden, 1968; Yannis, 1974).
Then a potential which includes steric hindrance (Flory, 1969) must be used
to calculate V {(eg). But the fundamental understanding of intermolecular
bonding in polymers is still too poor to allow V (e) to be computed
accurately from first principles in either case (in practice, experimental
data for E are used to calibrate the potential functions, rather than the
other way round). Instead, the modulus at absolute zero, Eof is obtained
by extrapolating experimental measurements of E at slightly higher
temperatures to absolute zero. It, and other material properties, are

listed in Table 2.

Increasing the temperature has two distinct effects. First, thermal
expansion increases the molecular separation and lowers the Van der Waals
restoring forces: this gives a slow drop in modulus, but does not.introduce
a time or frequency-dependence. Second, the thermal energy of the molecules
permits thermally-activated local rearrangements (usually, rotations about a

C-C bond), giving time-dependent strain and an associated drop in modulus.

The first effect leads to a roughly linear decrease in modulus with
increasing temperature. Yannas and Luise (1982) develop this idea: thermal
expansion increases the inter-chain distance, reducing the force required
for intermolecular deformation by bond stretching. The final form of their
equation is cumbersome but simplifies to a linear relationship at low

temperatures. Van Krevelen (1976) prefers the empirical relation:
E = Eo/(l + 2 T/Tg)

which, of course, is linear at low temperatures, but drops faster near Tg

In this paper we use a linear temperature dependence:

T
E=E (1L -a =) | (3)

g

m

to describe the drop in modulus caused by thermal expansion. The
dimensionless coefficients e, which best describted the low temperature data

for each polymer are listed in Table 2.

The second contribution comes from the small thermally-activated

Aoy o

't

R
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rearrangements of side groups or short segments of chain at "loose sites'" in
the amorphous structure (Fig. 3). These relaxation processes, all occurring
;t temperatures below Tz (and knewn, in order of decreasing temperature,
as the 8, Y and ¢ relaxations) give additional strain, and they thereby
reduce the modulus a little. Each relaxation is positioned for a given
locading time or frequency, about a characteristic temperature at which

thermal energy becames sufficient to activate the rearrangement.

Like similar relaxations in crystalline solids, the response of the
material to load is conveniently described by a rheological model. The
simplest that is of any real use is the standard linear solid (Fig. 4a),
composed of two springs of modulus E and A4E, and a dashpot of viscosity:

ey oo
where Q is the activation energy for the précess, R the gas constant and
"o a constant which is chosen to fix the éosition of the drop in modulus.
The standard-linear model gives a good phenomenological description of most

anelastic relaxations in crystals, and relaxations in glasses do, very

roughly, have the same characteristics. But more careful examination of ;;j
data for amorphous polymers shows that the standard linear solid is too o
simple. Its response leads to an almost step like drop in modulus at the ]

characteristic temperature; the real relaxation is broader (Fig. 5). This

is no surprise. In PMMA, for instance, the 8-relaxation is thcught to be
caused by a motion of the ester side-group, the Y-relaxation by the motion
of one of the two methyl groups and the é-relaxation by the motion of the
other one (Fig. 3). The amorphous chain-packing grips some of these more
tightly than others, so that each relaxation has a spectrum of activation
energies. The response is then more realistically described by the parallel
coupling of springs-and-dashpot units shown in Fig. 4(b), each dashpot

describing a part of the activation energy spectrum.

This arrangement of units, rather than a mere general one involving units
in series and parallel, is justified in the following way. Relaxation involves
the motion of isolated side groups - those which, at a given instant, are less
cightly gripped than the rest. Each can be thought of as a small spherical volume
in which viscous deformation takes place., embedded in an elastic matrix. The
constitutive equation for a material consisting of viscous inclusions in an
elastic matrix is discussed by Brown (1982): provided the dispersion of

viscous spheres is dilute (meaning that they are well separated), the
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material behaves like a standard linear solid (as in Fig. 4a). If each of the
spherical volumes has a different activation energy (as is the case for the
side-group relaxations discussed here) the same reasoning leads to the
conclusions that the material behaves in a way described by MHaxwell

elements in parallel, as in Fig. 4b.

As explained, the spectrum of activation energies arises from
differences in local packing density which makes it harder to move
some side-groups than others. We have used a Gaussian distribution of
activation enerzies with a mean Qm and a standard deviation AaQ. The
proportion of units (that is, the fraction of the spheres) which relax

Wwith activation energies between Q and dQ is f (Q) dQ where:

L Q- 2
£ Q) =—=exp -% (——
v2n

This defines a weighting function for each unit (Fig. 6) so that the modulus

drop GEi associated with full relaxation of the ith unit is:
GEi = AE £ (Q) d4Q {(6)

where AE is the total modulus drop associated with the relaxation. This
method introduces only one new variable, the standard deviation, AQ, into
the calculation of the relaxation; it 1is chosen so that the width of the
relaxation (Fig. 5) matches experiment. Data for AE, Qm and AQ/Om
PMMA and PS are listed in Table 2.

The Glass-Rubber Transition (The Visco-Elastic Regime)

As the temperature is raised, tﬁe Van der Waals bonds start to melt.
Then segments of the previously elastically-bonded chains undergo larger
sliding movements relative to each other and the material behaves in a
visco-elastic way. Within this regime it is found that the modulus E at
one temperature can be related to that at another by a change in the time

scale only, that is, there is an equivalence between time and temperature.

This means that the curve describing the modulus at one temperature can be
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superimposed on that for another by a constant horizontal displacement

log (a,) along the log (t) or log (V) axis, as shown in Fig. 7.

In crystalline solids (notably metals) the time-temperature equivalence
for the rate of diffusion, for creep, and for other thermally activated
processes, is well known. The explanation is straight forward. Take
diffusion as an example. The frequency with which an atom jumps from one
lattice site to the next depends on the product of two probabilities: the
probability p, = exp = (EJ/RT) that the diffusing atom has enough energy
to clear the barrier (height Ej) which separates the two sites; and the
probability p, = exp - (EV/RT) that the second site is vacant, since if it

is occupied the jumping atom cannot enter it. The jump frequency is then:

E. E
v o= v, exp - (ﬁ%) exp - (§¥) = v, exp - (E%) (7)

-

where Q = E, + Ev is the activation energy for the process, and V is

J o]
the atomic vibration frequency times various entropic and geometric terms
which don't affect the arguement. A change of temperature from T, to T,

causes a change in frequency from v; to V3, where:

o Q 1 1,
log (;:) = log a, = 533 {EZ -7t (8)

A simple shift along the frequency or time axis by log (awg then brings
the response at T, into coincidence with that at T.. This particular
time-temperature equivalence is a consequence of the operation of a simple

thermally-activated process with a single activation energy.

A spectrum of activation energies (which is inevitable in an amorphous
system) does not destroy the time-temperature equivalence though it may
change its form. If the width of the spectrum, aQ, 1is small (so that
AQ >> RT) then it is easily shown that the shift factor defined by eqn. (8)
still applies, and the relaxation follows simple Arrhenius kinetics. The
3, y and § relaxations do, in fact, give linear Arrhenius plots; those
for PMMA and PS are shown later. But the &, or glass-rubber transition
is more complicated. Experiments on liquids and on amorphous polymers

iWilliams et al., 1953) are not well describhed by eqn. (8); they suggest,
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instead, a shift factor (the "WLF" shift factor) given by: =3
C, (T -1T) 1
= { -
log ap . T o7 (9) 3
g -
|
where C, and C, are constants (the "WLF" constants, with Tg as —
reference temperature). In the limit T >>C2 - Tg’ this reduces to the o
simpler eqn. (8) with C, = Q/2.3 RTg. But the values of €, are such lj
that this is never a satisfactory approximation and a new, broader, physical ‘;:
interpretation must be sought. ;Ej
The quest had produced a number of models (for brief reviews, see Ward, :fi
1971; Arridge, 1975; Young, 1981). From these the following simplified =]
picture can be assembled and related *to the classical treatment f%
of thermally activated processes in crystals just described. Viscous chain
;~_ motion is caused by the stress-biased diffusion of polymer chains within the -
3 - -
' tubes which define their surroundings, as shown in Fig. 8. This snake-like

.

.

diffusive motion, or '"reptation’, must involve the propagation of

[

PR

“a "J.‘A4A

compression or shear wave pulses or kinks along the chain: in either case,

53

the projecting side groups of one chain must move over and past those with

v

'7
s

which they mesh in the surrounding tube, as shown in Fig. 9.

The frequency of the unit step associated with producing viscous strain
depends, as obefore, on the product of two probabilities: the probability
p, that unit segmenté of the polymer chain have enough thermal energy to
jump over the energy barrier which separates them from an adjacent position;
and the probability p, that this second site is '"vacant", i.e. that it has
sufficient unoccupied volume associated with it to accommodate the jumping

segment. The first probability, P, is given by an Arrhenius law like

egqn. (7). The second probability, P, is more complicated. In crystals,
unoccupied or "free'" volume is quantized as vacancies of fixed volume. Free

volume exists in amorphous systems too, but it is obviously not quantized in

the way it is crystals. When the specific volume of an amorphous polymer is ;;E
plotted against temperature (Fig. 10) there is a change of slope at Tg. TET
The free volume (Cohen and Turnbull, 1959; Haward, 1973) is the difference ;Sg
between the total volume, V, and that occupied by the molecules ;fg

oS

themselves, Vo. The occupied volume is that of a dense {though disordered)
packing of cylinders, one surrounding each c¢hain, with a radius equal %o the
Van der Waals radius plus that associated with the local thermal wvibrations

of “he atoms. What is left over is "free'" in the sense that it ca.




redistribute continuously. Instead of a thermal-equilibrium concentration
of vacancies, each of fixed volume, which move arcund cecntinuously, the free
volume exists (in thermal equilibrium, of course) as a spectrum of void
volumes which continucusly open up and close again. The <thermal expansicn
data show that (unlike crystals) the free volume increases linearly with
cemperature. Defining the fractional free volume as:
V - Vé
L . o (10)

we have that:

Where fg is the fractional free volume at the glass temperature. The
guantity . is the free-volume expansion coefficient: it is the difference
between the total expansion coefficient and that for the occupied volume.
The figure shows hcw the value of as changes at Tg; above Tg it is
large, below it is much smaller (some authors take it to be zero, but we
find in Section 3 that a small finite value may be more realistic). The
probability, I is then the chance that, adjacent %o a jumping segment, a
local free volume of fc or greater is available (fc is the fractional
volume required to accommodate the ‘umping segment). This probability
(3ueche, 1953) is:

Af

P, = exp - (=) (12)

v

Then the viscosity at temperature T, relative to that at Tg is given by

o, (T) p, (£)/p, (T ) p, (fg), or:

ry

-2 (13)
‘g

1
- —)1 (a
T )} exp (B !

L= 1l

= exp {% (

3
3
x

~where 3B = Afc' Well below Yg *he free volume is almost independent of

cemperature (Fig. 10); then the first term is dcminant and we find

Arrhenius behaviour (though with a spectrum of activaticn energies). At and
just above T,, on the other hand, fv increases rapidly with temperature;
and i%t is probable that @, correspondingly, Zecreases: =:then <“he secznd

tarm  is deminantz. Ixperimen<s on viscous 1iguils sucport this

riew: Dcolittle (19951, 1982, presents da-a whicn are well described by:
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n (T) 1 1
——— = exp { B (E - E-) } (14)
n (Tg) g

with the constant B close to unity. Substituting eqn. (11) leads

immediately to the WLF equation:

1 (T) - (B/2.3 fg?(T - E&l

logay= log S (Tg) = fg/af T Tg (15)

with C = - B/2.3 fg and C, = fg/af. One of the many achievements of the
work of Ferry and his co-workers (Williams et al., 1955; Ferry, 1961) is the
demonstration that C, and €, are universal constants at and above Tg
The same constants describe polymers also, implying that fg and aes *oo,
are universal constants. It is helpful to note their magnitudes: taking

B =1, the fractional free volume at the glass temperature, fg, is found
to be 0.025; and the free-volume expansion coefficient above Tg, a g is
4.8 x 10" */K. Both values are physically plausible. But, as before, the
simple rheological model of Fig. 4(a) leads to a modulus which decreases
too steeply with temperature. A much better fit to the data is given by the
distributions of Fig. 4b, introducing (as before) one new parameter: the
standard deviation ¢ = AC,/C,, and using it in the same way that

AQ/Q was used earlier,

#

The Rubbery Modulus

Above Tg’ the modulus of linear, amorphous polymers often show a
plateau at around 1 MPa. This is close to the modulus of weakly
cross-linked rubbers and arises, as far as is known, in a similar way. In

the rubbery state, the weak intermolecular (Van der Waals) bonds have
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largely melted. The long chain-like molecules can GAB2, Disc 9
assume a variety of configurations in response to the thermal vibration
which causes a '"micro-Brownian'" motion of the units of the chain. The most
probable configurations are those which maximise the entropy of the system.
But <there 1is a <constraint; the molecular -cnains curl
and twist around each other; in places they form mechanical entanglements
which behave very like cheﬁical cross-links (Fig. 11). When strained, the
chains tend to order (by lining up) and the entropy decreases; they are
prevented from wriggling back to a disordered state by the entanglements.
The rubbery modulus is related to this change of entropy by an equation
which is the analog, for entropy-induced elasticity, of egn. (2):
d&s (e)

de

where S (¢) 1is the entropy per unit volume as a function of tensile strain

E=T

€.

Standard texts (Treloar, 1958; Ward, 1971; Young, 1981) summarise the
calculation of the rubbery modulus from this entropy-dominated mcdel. For
small strains the result is:

- 3 P (T) RT

% (18)
e

E

where 0 (T) 1is the density of the rubbery polymer, R 1is the gas
constant, T the temperature and ﬁﬂ is the average molecular weight

between cross-links or (here) entanglement points.

The statistical mechanics of entanglements in linear polymers is, at
pregent, beyond the scope of rubber theorists; ﬁ; cannot be calculated and
is derived instead from data for E by using egn. (16); values are listed
in Table 2. This means that the entropy model of rubber elasticity has not,
strictly speaking, been verified for linear polymers, although it is
difficult to visualise another cause for the rubbery behaviour; and the

values of ﬁe derived from the equation are physically sensible.

At first sight, eqn. (16) suggests that the modulus in the rubbery
regime should increase with increasing temperature, and for many
cross-linked rubbers, it does. But the density decreases with increasing
<~emperature. If the density at some reference temperature (say, T ) is

3 (Tg) and the volumetric coefficient of thermal expansion is 3 then
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the density at some higher temperature T 1is:

o (T )
= (17)
l-tav (T-Tg) (

o (T) =

This change in density (which is included in our calculations) cancels, to
some extent, the explicit temperature dependence of eqn. (16).

Further, it is likely that the weaker entanglements unravel as the
temperature is increased so that Me' too, increases with temperature.

The combined influence of this and of thermal expansion leads to the plateau

(usually with a slight negative slope) seen in experiments.
Rubbery and Newtonian Viscous Flow

At high temperatures (T R 1.2 Tg) the Van der Waals bonds melt
completely and even the entanglement points slip. This is the regime in
which thermoplastics are moulded; the polymer behaves like a viscous liquid.
For a given polymer system (such as PMMA) the viscosity, n , depends on
the molecular weight, ﬁw and the temperature T. The time-and-

temperature dependent modulus (at constant stress) is simply:

E =2 (18)

Two regimes of flow have been identified. Immediately after the rubber
plateau, the polymer flows in a way which has the same time-temperature
equivalence as that of the visco-elastic regime (eqn. 9) implying that it is
controlled by free volume. This is generally called "rubbery flow". Then

the viscosity is given by:

C, (T-T.)

M=, &P -+ T - T (19)

At higher temperatures and low shear rates, flow becomes Netwonian viscous,
and follows an Arrhenius law with a narrow spectrum of activation energies,
s¢o that:

- _n 1
n = n_ exp =% (20) Y
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The value of rB depends on the molecular weight, ﬁw. in one of two
ways. Below a critical molecular weight, Mcr' the viscosity is
proporticnal to molecular weight so that:

w (21)

where ncr is the viscosity of a melt with molecular weight Mcr' Sut

above Mcr' the dependence changes such that:

Commercial polymeric systems are in this second regime; and in the range of
temperatures covered by the diagrams shown in the next section, rubbery flow

dominates.

The understanding of this behaviour is still incomplete. Progress in
physical modelling has been made by Doi and Edwards (1978a,b,c, 1979) who
extended work of Rouse (1953) and of De Gennes (1971) to describe the
process of polymer-chain reptat:.on. The polymer chains behave like tangled,
flexible strings, each enclosed in a tube made up of the surrounding mass of
polymer (Fig. 8). Extension or shear of the polymer requires the diffusive
motion of the str{ng in its tube. In the Rouse (1953) approach, the
Brownian motion is resisted by a Stokes frictiod;,equivalently, compressive
or tensile kinks are formed on the chain and diffuse along its length
(Fig. 9): the passage of one kink along the entire chain displaces it by the
xink-strength, b. If the chains are short and straight, as in Fig. 9, the
time required for a2 kink to diffuse along a chain is simply proportiocnal to
the molecular weight. But if the chains are long and tangled, the
{stress-based) random walk, or reptation, of a chain in its tube is more
complicated. Doi and Edwards (1978a,b,c,) and Doi (1983) show that the

viscosity should then vary as ﬁ;, in fair agreement with the observations
described by egn. (22).

Data for the quantities do' M, M are listed in Table 2.

A28t Alath anie

R S

»

AN
Talgn s

f'“.' :. L]

JL;W e
A

v

ek n g

'

Y
2

Ao

“x
Ve
Py




A~ olMEARSE LA~ st el e S i A A S AR oA M Sl A M N R D A A o e
~ .

[
1
f
L
1
1
L
[
1
r
L
[
L
v

+ o

¥

.
e

-
s

14
2y

Decomposition -
R

If the polymer gets too hot, the thermal energy exceeds the cohesive ;Eg
=]

energy of some part of the molecular chain causing depolymerisation or
degradation. Some (like PMMA) decompose into monomer units; others (PE,
for instance) randomly degrade into many products. It is commercially
important that no decomposition takes place during high temperature
moulding, so a maximum safe working temperature is specified for each
polymer; typically, it is about 1.5 'I‘g (Table 2). We have truncated the

deformation diagrams at this temperature.

3. DATA FOR PMMA AND PS

In the last section, we discussed constitutive laws for each of the Affﬂ
four main deformation regimes. We now fit data to these laws, extracting o
values of the parameters (like Eyr oy Qpy 8Q, Tg, etc.) which best
describe the data. The final choice of parameters has already been T

presented in Table 2. But the method used to obtain them is an important

part of the process for constructing the maps shown later . The data
are drawn from manv sources »  referenced in the text

and on the figures.

Thermal and Structural Data

Glass temperatures, measured calorimetrically and by dilatometry, are

listed in Table 3. We have selected the values shown in Table 2 as the most
reliable. The thermal expansion coefficients (Table 2) are from Yannas and

) Luise (1982), Williams et al. (1965) and Van Xrevelen (1976). The molecular

weights given in Table 2 are typical values for commercial PMMA and PS,
though, in practice, they vary widely depending on the supplier and the

grade.
The Glassy Modulus and the Secondary Relaxations

The modulus at absolute zero, Eo, and its temperature dependence,

a . were obtained by extrapolation from above 4 K, using the data of
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Sinnott (1959, 1962). The values obtained in this way for PMMA are close to -
the average for all the available data; and those for PS are supported by .
data from Bondi (1968), (Table 4). !
> "

’

The mean activation energy Qm foir each of the secondary relaxa-

tions is founé by plotting +he log of the time + {(or frequency v )

for the centre of the transition (or of the damping peak) against 1/T. It ;j
is found (e.g. McCrum, Read and Williams, 1967) that the data follow a fﬂ
simple Arrhenius law: ﬂj
q -

1 m -d

Vel *.exp- =% (23) =

T

so that the plot gives a stright line with slope - Q /2.3 R. For PMMA
(Fig. 12a) the B-relaxation has a mean activation of 121 kJ mol™ , in
agreement with the measurements of Iwayanagi and Hideshima (1953 a,b) and of
Sato et al. (1954). The activation energy for the 8 -relaxation is

13 kJ mol™'. For PS (Fig. 12b) the g-relaxation has a mean activation
energy of 132 kJ mol"' . Only two data points (Crissman et al., 1965;
Sinnott, 1962) are available for the §-relaxation in PS so Q was
calculated from these directly.

When the transitions are well separated (as they are for PS) the drop
in modulus AE can be measured directly. When this is not so (as for
PMMA), AE for each transition is adjusted to give the best fit for the

overall drop in modulus. Finally the spread of activation energies,

8Q/Q, , is chosen by trial and error to match the breadth of the
transition. The parameters which fit various groups of data are listed in

Table S and abstracted in Table 2. The predic%tions of the rheological :ﬂ

model, using these parameters, are compared with raw data in Figs. 13 (a), :
(b) and (c). In practice, the § -transition in PMMA and che y-transition in f?
PS nave a very small effect on the moduli (AE < 0.1 GPa) and they are -

ignored in constructing the diagrams.
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The Glass-Rubber Transition and the Rubbery Modulus

The glass-rubber transition, too, is modelled by the rheological

model shown in Fig. 4(b). The modulus rop AE

is the difference bvetween the glassy mocdulus (reduced by

the modulus drops associated with the secondary transitions) and the rubbery
modulus. The mean value of C, and its standard deviation
were chosen as described earlier. For PMMA, a standard .
deviation of 0.055 gives a good fit to data (Fig. l4a); for PS, the value
0.08 gives a good fit (Fig. 14b).

The rubbery modulus is related to the molecular weight between
entanglements Ee’ by eqn. (16), The most recent measurements for
commercial polymers are those of Seitz (1979) and it is his data that we
have used to select .ﬁe for PS. But for PMMA a range of values for the
rubbery modulus and density have been reported. Results derived from these
are listed in Table 6; the value we have selected for Me is about half the
value given by Seitz. The density o (Tg) at the glass temperature was calculated
oy extrgpolating data for o ﬁmm[the messurement temperature to Té.
Figure 15 shows the ekperimental shift factors, log aps for PMMA and
PS. Above '1‘g they are well fitted by the WLF equation (eqn. 9) with

f
listed in Table 7. The figures show that at 'I‘g there is a discontinuity

values of C, and (C, which are consistent with values of fg and a

in slope of the shift factor. The expansion data given in Table 7 suggest
that P is smaller below Tg, but that it.is not zero. We have therefore
used the WLF equation below Tg, with a new value of C,, calculated from
the data in Table 7. The final choice of C, and C, are listed in

Table 2. The viscosity in the viscoelastic transition has been calculated

as described in Section 2, using these parameters in the WLF equation.
Rubber (Glass) - Viscous Transition and Decomposition

Data for viscous flow are summarised in Table 8. The modulus is

calculated by using egn. (19) with the data listed in Table 2, including a

spread of the constant C, Decomposition data are summarised in Table 9.




4, DEFORMATION-MECHANISM DIAGRAMS

Construction and Features of the Diagrams

The previocus sections have described the broad regimes of
deformation behaviour for linear amorphous polymers, between absolute zero
and the decomposition temperéture. Physical models exist for each
deformation mode, leading to constitutive laws which describe the time
and temperature dependent modulus Z; <the values of the parameters which

enter the laws are xnown, at least avproximately {(Table 2).

We now ask: over what range of time and temperature is a given
mechanism dominant? And when do the changes of mechanism appear? For each

mechanism, the constitutive equation takes thg form:
E=f (t, T, material parameters)

tor (24)
E=f (v, T, material parameters)

where t is the loading time (or v is the frequency) and T is the
absolute temperature. The dominant mechanism for a given T and ¢ is the
sne which leads to the lowest value of E. Mechanism changes take place

along the lines cbtained by equating pairs of the constitutive laws.*

Figures 16 to 19 show deformation mechanism diagrams for PMMA and PS,
constructed from the constitutive laws of Section 2, using the parameters of
Table 2, combined in the way we have just described , and detailed in the Appendix.
They show he time- ard tenmperatire-depencent medulus, £, for a rumber of different loading

conditions, as a function ¢f temperature and frequency of lcading.

Figures 16 and 17 show the dynamic modulus of PMMA over the full ranges

of temperature and frequency that can be realised in practice. In Fig. 16,

*The response of the rheological model for the relaxaticns is evaluated
numerically, summing the Gaussian distridution of activation energies over
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the axes are E and T; the contours are lines of constant frequency. The
four regions are roughly distinguished by the range of modulus which
characterises them, as suggested by Tobolsky (1960), though strictly it is a
field of values of E, T and ,, not merely of E, which characterises a
mechanism. In Fig. 17 the axes are E and v (plotted inversely to make
the diagram comparable with diagrams which have time as abscissa: see
Gilbert, 1984). Here, too, the four mechanism-regimes are distinguished by
a range of values of E. Figures 18 and 19 show similar diagrams for PS.

They closely resemble those for PMMA.

Influence of Polymer Chemistry and Molecular Weight

It seems probable that these diagrams for PMMA and PS are broadly
typical of those for linear amorphous polymers. By normalising the
temperature scale by Tg, the lowest-order effect of differing polymer

chemistry are removed.

At any more detailed level, of course, there are effects of polymer
chemistry and molecular weight. In the glassy regime the secondary
transitions are determined by the nature of the side-groups, since these
influence the packing of molecules in the amorphous state and so define the
width of the transitions. ( The experiments of Fujimc et al. (1961), on
co-polymers of PMA and PMMA, for example, show that the larger the
sidegroups, the more difficult it is to pack the chains, and the broader is
the glass-rubber transition.) The extent of the rubbery regime, too,
depends on the.molecular weight of the polymer. Reducing the molecular
weight shifts the contours in the viscous flow regimes to the left, and
reduces the extent of the rubbery plateau or removes it altogether.
McLoughlin and Tobolsky (1952), for instance, find that PMMA with a
molecular weight of 3600 kg/mol shows a pronounced rubbery plateau, while
that with a molecular weight of 150 kg/mol shows none. Other studies of
the extent of the rubbery regime can be understood in these terms
(Vinogradov et al , 1971). And the viscosity of the melt regime, too,
depends on molecular weight (Van Krevelin, 197f), though the differences

scale, broadly, as Tg'

We expect, therefore, that linear amorphous will be described by
diagrams like those of Figs. 16 to 19, with small differences caused by

molecular weight and architecture.
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S. SUMMARY AND CONCLUSIONS GAB3, Disc 8

Maps can be constructed which summarise the time-and-temperature
dependent mcdulus of amorphous polymers, E (t,T), for a wide range of
temperatures and times, under various loading conditions. Several geparate
mechanisms are involved: bond stretching, constrained molecular movement and
larger scale molecular sliding, rubbery behaviour constrained by
entanglements and true viscous flow. Each mechanism can be modelled (though
with differing levels of physical realism) to give constitutive equations
which describe how the modulus E (t,T) depends on temperature, time or
frequency of loading, and on material parameters which characterise the
chemistry and molecular architecture of the polymer. We have assembled
material parameters for PMMA and for PS and used them, with the constitutive

equations, to construct the maps shown as Figs. 15 to 19.

It is probable that the maps shown here are broadly typical of linear
amorphous polymers (though maps for others can readily be constructed using
the same method). The same approach can be adapted to describe amorphous
thermosets and rubbers, and, with further changes, to commercially

significant semicrystalline polymers such as Nylon and PE.

The maps shown here describe small-strain behaviour. The next step, we
believe, is to develop a parallel approach for large strain deformation
which is capable of including cold drawing, shear bandirng, twinning and

crazing.
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TABLE 3: GLASS TRANSITION TEMPERATURES (HIGH Mw)

Material Glass Temperature, Tgﬁ(x)
f) —al)
omma  [378%), 378, 3779, 3779, 388®), 37sf), 3788
PS 3730, 373t), aged), 3738,
a) Loshaek (1955); b) Rogers and Mandelkern (1957); ¢) Wittmann and

Kovacs (1969); (d) Fox et al. (1958): e) Berry and Fox (1967);
f) Van Krevelen (1976); g) Fox et al. (1976); h) Fox and Flory (1950);
i) Plazek (1965); (j) Schmeider and Wolf (1953).

TABLE 4: YOUNG'SMODULUS AND TEMPERATURE DEPENDENCE*

Polymer Modulus, Eo a
GPa

PMMA 8.572) o0.28'

lO.Slb) -

7.70%) -

PS . 6.21d) O.28d)

5.80°’
6.25°)

* Eo is Young's Modulus extrapolated to 0 K; a is the normalised

m
temperature dependence (egn. 3).

a) Sinnott (1959) Extrapolated from 4 K and calculated from G assuming
v = 0.,33.

b) Yannas and Luise (19382) Numerical average from other sources (¢! and
(d) are included in the PS average.

c) Bondi ‘1968).

d) Sinnott (1962) Extrapolated from 4 K and calculated from G

assuming
v = 0.33.
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TABLE S: SECONDARY TRANSITIGON DATA

e Il e RSl ek Sah Sl b ek Salh Bad-Sd- S B4 el e
| AR CRIOCAR A St et et i Jan gt e f,F:Fﬁﬂf:fﬂf?'ﬁ‘}'ST}'FT}T}‘YW)W}VE?;"TT‘\.—‘Wﬁﬁl\.- TR

Polymer Transition % -1 T* 5E AQ
(kdmol™ ') (K) (G;q) (kJmol ')
PMMA 8 75.43) 283%) 3.55P) 24P)
121.,5%)
75.4¢}
125.79)
71.2¢8)
PMvA Y 13.00) 100% 1.66P) 2.57%)
PMMA 5 <20.98) 4,20 <0.1%) -
: <0.1%)
PS 8 125.70) 300°) 0.2P) 55%)
138.3%)
PS Y 33.53) 1324) .<o.o7";- -
- 0.0759
PS - s ‘ g.4k) 6% [ 1.798) | - %)
0.9¢)
>1.4)
>0.5%)

’Qm is the mean activation energy, T* the temperature
characterising the damping peek at a frequency of 1 Hz, AE the modulus
drop associated with the trarsition and AQ the spread in Q required
<o fi*t the experimental data.

a) Deutsch et al 1954

b) Iwayanagi and Hideshima 1953a, 1953b
¢) Heijboer 1956

d) Sato et al 1954

e) McCrum and Morris 1964

£) Sinnott 1960

g) Johnson and Radon 1972

h) Yano and Wada 1971

1) Conner 1970

J) Illers and Jenckel 1959

k) Calculated frem s) and t)
J) Illers and Jenckel 1959

k) Calculated from s) and t)
1) Heijboer 1965

@) Powles and Mansfield 1662
n) Sinnott 1959

0) Illers and Jenckel 1958

p) Best fit to data this study
q) Crissman et al 1964, 1965
r) Schmieder and Wolf 1953

8) Crissman et al 1965

t) Sinnott 1962

u) Bondi 1968

W) Hendus et al 1959

x) Estimated value using the method descrized in the zex<




MOLECULAR ENGANTLEMENT WEIGHT, DENSITY AND EXPANSION COEFFICIENTS

TABLE 6:
Polymer Mg P ag a, p(Tg)
(kg/’mol) (lO" kg/ma) (K-l) (K-l) (lOJ kg/m’)
PMMA 9.152§ 1.188%) 2.7x10-* a.zxxo-*i; i.16™
10.0 .1.195§; 6.6x10""
1.188 )
1.1sog)
1.21%)
1.19
1
PS 19.1:; ‘-°“"-8§5J) 1.81; 4-51; 1.03"
18.1 1.05 2.8 7.1
1.057¢) <)
1.052-1.065
*Me is the molecular weight between entanglements, calculated
from eqn. (16), p 1is the density at the temperature listed

in the reference,

T
g

and

Q
v

extrapolated to

a)

J 6 o

ag is the bulk expansion coefficient below

T
g

Seitz (1979)

Masuda et al (1970)

Onogi et al (1970)

Fox et al (1958)

Kolb and Izard (1949) at 273 K
Gall and McCrum (1961) at 298 K
Rogers and Mandelkern (1957) at
Fujino et al (1962) at 298 K
Brady and Yeh (1971)

Natta (1955)

Williams and Cleereman (1952)
van Krevelen (1976)

Calculated from data presented

T
g

is that above Tg; 0 (Tg) is the mean density

Bttt ata

O

A

B

)
[ NI
PR 5

1

- . K. . ‘.‘."
P T [
PV 1O TR

2

gt g d

P

Lp

L A'

:‘:. ' e .
Y ol e
. S

o

PR
e

RSN

s
e




m-. -\.H-“-. # X .\wﬂqw-q.”ﬂ.l.i-m_ - ... ..- -n ..n -b -' ..

L (LS61) vAtuowiN pue BITfng Jo ejmp 3y} 1) 03 U3ISOY) (g

m (1961) 1® 315 owifng jo ejep ayy 1j 03 uassoyy (e

| ]

w. (61) "ubs uy A3y1soossi1A tEIjuUsUOdXmaId ayy s71 .o:-

m Ana|o~ x p°1 Sd

j (001 % 2 VW

w. .

¢

; w e N

3 L RETTTS (o8

i .

g

3 »MOT1d SNOJSIA :8 FTAVI

b ; _

3 (v861) 312q1TH Aq poje[noted (°

ﬁ. (v) Jaa up sontea advuany (qQ

- (O1°Vv @148}, '9/61) ustanaay uep (e

:

h.. 3 . I
w *(266T '1G61 ‘212211000) G20°0 = J Pue (GG6T ‘' 1® 319 SWRITIIM) T =4 UIIm p/ 3 =%
- o

"_. o pue mu £0€°2/4 = 'D Bursn ejep esayy woaj poje(NOteEd due g afqel, ut fy pue !5 -3dusaAIFIP 8Yy ST o (6 1)
- a3

w sunjoa patdnodoo ayy a0 UITOTJIP00 uotsuedxs 9yl 8y %o .w.—. MmO19q pue aaoqe uU3Id1J 02 uotsuedxs W(nq 3yl sae 0  pue >=..
Au..lnz x ¥4 Ao,loﬁ x 69°1 AQ?OA X . B8°G 2....od x (2°¢ A_w....oa x 219 Sd

_ Ac..:o_a x 1€°G Au..‘OA IR TN | Ao?n: x ¥'6 As....o~x 69°¢ Am..|o~ x mm.wr VAW

”, a8 3 3 (,-3%) (y-M) (=

: (L<d) " (1>1) 1eta93eN

! , : 8 o ) A, ) A

g Jie o 13e ® 1L 1e o

: «VIVQ INNTOA aadd £ dlavl

W e

lllb\ R




el Sl adar et nha Rt A S S ash e L e e s i

30

TABLE 9: DEPOLYMERISATION TEMPERATURES

Polymer Td Td/'rg

PMMA 5432 1.44

PS 543b) 1.46

a) Dosser 1983
b) Shell Plastics 1983
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APPENDIX: COMPUTATION OF THE DEFORMATION DIAGRAMS GABApp, Disc 8

A
D' A
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The modulus E 1is calculated as a function of temperature T and
loading frequency . ("dynamic loading") as described below. Calculations
for modulus as a function of temperature and time (''stress relaxation”)

follow the same method. The tex: describes models for the mechanisms

of deformation which determine the.modulus, E. At the highest
temperatures, 2 is determined by viscous flow. The

modulus E is then determined by the faster

vk’
of the two flow mechanisms (eqns. 19 and 20). As the temperature is

decreased, E increases until it exceeds the rubbery modulus = (eqn.

16); then thi:? not viscous flow, determines the modulus: E is szt equal -
to the lesser of EvR and ER. Further decrease in temperature introduces
the glass-rubber transition. Let the increase in modulus associated with
this transition be AEa (defined below). Further drop in temperature
freezes out the 8, vy and § relaxations; let the increase in modulus
caused by these be EB' AEY and AE&' Then the modulus, at temperature

T and frequency w is:

T A :
E (T,w) = Least of (ER and EVR) - AEa +* EB + AEY + AEG (A1)

To proceed further, we require expressions for the individual terms.
Consider the § relaxation as an example. If is described by the array of

n Maxwell elements shown in Fig. 4(b). For a single element:

€ == +

Q.
asla

Then for the parallel array of Fig. 4(b), the following constisutive equaticns hold.

For constant strain:
n

. 8 Ei t
E (T,t) = L 3 Elex‘p (—G—T) (A2)
i=1
for constant strain rate:
n
¢ &n, 3 Ei t

E (T,t) = [ —=2(1 - 2xp (= =) (A3)

- an.,

i=1 i

and for dynamic loading (sc that € = <, sin wt):
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This last equation is the one we require for the present problem. Let the

total modulus change during the § transition be AE?. Then, for this

transition:
n s E,
_ T
E = [ GEi z)
. i=1 1 +(-—€jr)
where sEi = AE; £ (Q) 8Q
Qi
and Gni =n s ©XP (ET) f (Q) &Q.

Similar expressions are used for the 8 and Y <transitions; the glass

transition only differs in the expressibn used for n: it is (eqn. 1%5):

C, (T -T)
= JE—
=g exp (- T Tg)

The rubbery flow regime is treated in a similar way.

An important quantity in each summation is the standard deviation of
the activation energy. 1t determines, through eqn. (5), the breadth of each
transition. The standard deviation of Q (for the 8, Y and §
transitions) and of C, (for the & and rubbery flow regimes) is listed in

Table 2 as the "fractional spread" in each quantity: AQ/Qm and AC,/C..
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Fig. L. Schematic showing the regimes of behavicur typical of an
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Y Fig. 2 Schematic of a linear amorphous polymer. The covalently-

[ linked chains (full lines) are bonded to each other by weak
e Van der Waals forces (dotted .ines) which determine the glassy
o modulus.
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Fig. 4. (a) The standard linear solid; (b) the extended model. If a

Gaussian distribution of relaxation times is assumed, the model
requires only one more parameter than the standard-linear sclid

to describe it completely.




!
¥

P M
& LR RN
5’ Srave U,

ryw

LE UL

r
"

]

ol 2

X

.

e

Fig. S.

Fig. 6.

TR NN T Iw N T Y

T
RNt St bt i GRS e 4w e 4
- - A | 2 AN A N CR e A o e ¥

STANDARD LINEAR
SCLID

LOG(MODULUS)

i . EXPERIMENT
[ )

TEMPERATURE OR LOG (TIME)

The response of the standard-linear solid with a single
activation energy compared with experiment.

AE f(Q)

A Gaussian distributicn for the fraction of units with activation
energies between Q and Q « §¢ requires an associated
distribution of moduli 5Ei. illustratad nere,

R R A L AL & e o
o




L Sl Tt A0 Sai SgatEad

i 7 Schematic of the time-temperature equivalence for the modulus.

p.alladh Sl ‘St ads - Segd Sailh Sos J

hatala” Jhe® et Sabihatain S AR - alCUER AA S L R

LOG (MODULUS)

LOG (TIME)

OR LOG (1/FREQUENCY )

RN
1 '.l . ﬂ"
e i

PN

B e

S i "..\ .
' g . ‘X'.A .
o 4 e

A

b

!
i

’

A

l"""..’l
VRN BV

L4
)

i L IR e X ()

;‘ rt-‘ Sl Sl S .I .
PR RN )
R T




b e S R A St A et M il St A it e * g S o "

)

x B
EAL RN |
a

P
RN 3
R T o

x

Fig. 8. Schematic of viscous diffusive motion, or reptation, of a polymer y
chain in the tube defined by its immediate surroundings. RS

riz. 9. The diffusion of compressive kinks along a polymer chain, ls2ading
%20 relative motion of chains.
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Fig. 1il. Schematic of a polymer network showing entanglement points
{marked 'E') which act like chemical cross-links.
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